Home

Contact:

I'm LinkedIn and Google-Plussed.

Mail and packages, use maildrop:
Norman Sperling
2625 Alcatraz Avenue #235
Berkeley, CA 94705-2702

cellphone 650 - 200 - 9211
eMail normsperling [at] gmail.com

Norm Sperling’s Great Science Trek: 2014

San Luis Obispo
Santa Barbara
Palm Springs
Death Valley
Tucson
El Paso
Corpus Christi
Baton Rouge
Tampa
Everglades
Key West
Winter Star Party, Scout Key
Miami

MARCH 2014:
up the Eastern seaboard
mid-South

APRIL 2014:
near I-40, I-30, and I-20 westbound

MAY 2014:
near US-101 northbound
May 17-18: Maker Faire, San Mateo
May 23-26: BayCon, Santa Clara

California till midJune

JUNE 2014:
Pacific Northwest

JULY 2014:
Western Canada, eastbound

AUGUST 2014:
near the US/Can border, westbound
August 22-on: UC Berkeley

Speaking engagements welcome!
2014 and 2015 itineraries will probably cross several times.

The Dim, The Weak, and the Ugly

© 2002 Norm Sperling, excerpted from What Your Astronomy Textbook Won't Tell You

How does a researcher select what to research? How does an editor select what to publish?

In both processes, the humans involved are often attracted to bright and beautiful objects. For the researcher, "bright" means plenty of light is available, making it practical to take detailed photographs and spectra. For the picture-editor who has to select some items and leave out others, bright and beautiful objects beat dim and ugly ones.

This means that the results reported in textbooks, the press and research journals are not a fair sample.

Red Dwarf Stars

The most abundant type of star seems to be the red dwarf. It's certainly the most abundant type within 25 light years. The very closest star to the Sun, Proxima Centauri, is a red dwarf – but so dim that you need a telescope to see it. Even the brightest red dwarf is too dim to see without binoculars. Since red dwarves are very difficult to recognize, hardly any are known.

For all their abundance, they aren't studied by very many researchers. Compared to other types of stars, they're dimmer, so there is less light to study. They are generally thought to not do much, other than sporadic unpredictable flares, so there is little of interest to attract researchers.

If red dwarves were studied as intently as, say white dwarves or red giants, would more interesting things would be discovered about them?

Thin Nebulae

Bright, thick nebulae get lots of attention. For active nests of stars, for beautiful twists and knots, they look great. There are lots of thinner, dimmer nebulae cataloged, but only a few observers track them down. Mostly, thin, dim nebulae get ignored.

If thin nebulae were studied as much as thick ones, would more interesting things be discovered about them?

Dwarf Elliptical Galaxies

In nearby clusters of galaxies, the most abundant galaxy type is the dwarf elliptical. To see even the brightest requires a significant telescope. Beyond 50,000,000 light years, dwarf ellipticals are very difficult to recognize. Because they are small and faint, not many are known.

For all their abundance, they aren't studied by very many researchers. Compared to other types of galaxies, they're dimmer, so there is less light to study. They are generally thought to not do much, having little nebulosity and no big powerful stars, so there is little of interest to attract researchers.

If dwarf ellipticals were studied as intently as, say, spirals or giant ellipticals, would more interesting things would be discovered about them?

With Galaxies, as With People, Pictures Show the Most Attractive, Not the Most Typical

People who select illustrations for books, slide sets, and other media naturally tend to pick the most attractive examples. This leads to some important misunderstandings. People looking at the examples tend to think they're typical, when actually they are not.

"Spiral" galaxies, which physically are disc galaxies, are prettiest to most humans. Therefore, the prettiest spirals show up in books and slide sets a lot more than others do. Ragged and less-symmetrical spirals, and elliptical and irregular galaxies, hardly ever get selected, even though ellipticals are very abundant.

Most textbooks include a photo of the beautiful galaxy M 51, the "Whirlpool". This is the galaxy with the most obvious spiral appearance; smaller telescopes (perhaps 35 cm) will reveal its arms than any other galaxy's. Many books call M 51 "a typical spiral galaxy". It is actually one of the least typical! Very few disc galaxies have continuous arms that can be traced so far around. Hardly any other bright galaxy has such vivid arms. Enjoy the beautiful view, but don't swallow the claim that it is "typical". It isn't, which is why so many books include it. More typical galaxies don't look as handsome. Editors select the nicest-looking pictures, therefore making the selections anything but "typical".

Barred spirals, too, rarely look like their "typical" case, NGC 1300. That one, again, looks prettier and cleaner than most. That's a good reason to publish its picture, but it's wrong-headed to call it "typical".

Much the same applies to planetary nebulae, pre-stellar nebulae, and surface features on planets. Editors (and often researchers) select the brightest and most attractive ones. Dimmer and less-attractive examples may be more typical, but they're less-often studied and shown.

Contest! Open to all!
Identify the "blandest galaxy", "ugliest galaxy", "blandest nebula", "ugliest nebula", "blandest planetary surface feature", "ugliest planetary surface feature", etc. Winners may be published in later editions of this book, and on this website.

The Journal of Irreproducible Results
This Book Warps Space and Time
What Your Astronomy Textbook Won't Tell You

Your Cart

View your shopping cart.