I'm LinkedIn and Google-Plussed.

Mail and packages, use maildrop:
Norman Sperling
2625 Alcatraz Avenue #235
Berkeley, CA 94705-2702

cellphone 650 - 200 - 9211
eMail normsperling [at] gmail.com

Norm Sperling’s Great Science Trek: 2014

San Luis Obispo
Santa Barbara
Palm Springs
Death Valley
El Paso
Corpus Christi
Baton Rouge
Key West
Winter Star Party, Scout Key

MARCH 2014:
up the Eastern seaboard

APRIL 2014:
near I-40, I-30, and I-20 westbound

MAY 2014:
near US-101 northbound
May 17-18: Maker Faire, San Mateo
May 23-26: BayCon, Santa Clara

California till midJune

JUNE 2014:
Pacific Northwest

JULY 2014:
Western Canada, eastbound

AUGUST 2014:
near the US/Can border, westbound
August 22-on: UC Berkeley

Speaking engagements welcome!
2014 and 2015 itineraries will probably cross several times.


101 American Geo-Sites You've Gotta See

by Albert B. Dickas. Mountain Press, Missoula, 2012. 978-0-87842-587-7. $24 softcover
review © Norman Sperling, June 11, 2012

Both for sight-seeing and for tutorials, this is a wonderful new book. It illustrates a great many important geological principles while providing glorious sights to see. Almost all of the sites can been visited by road. You'll find many settings of igneous, sedimentary, and metamorphic rocks (JIR spoofs those as ingenious, sentimental, and metaphoric).

Each selection has a 2-page spread: the left side tells coordinates, background, and what you can see. The right side presents 3 or 4 photos, cross-sections, maps, and/or development sequences. As in most cases where a publisher or designer dictates that all selections get equal space, both stories and typography may seem puffed or crammed.

Many places are within a half-day drive for most Americans. There's at least one in every state - one of the selection criteria. Just as in baseball's All-Star Game, where there has to be a player from every team, this promotes a number of less-important selections at the expense of better ones. Baseball depends on its fan-base, but people seeking superior geologic examples know perfectly well that they have to travel to see most of them. I hope the next edition abandons this criterion. Travelers will find concentrations of gem-quality sites easier to take in during reasonable excursions.

The author's illustrations and points are extremely clear. I found no typos, and only 5 minor mistakes.

The glossary, references, and index all have lots of entries, enabling a reader to pursue items. The glossary is a bit terse considering that many readers are novices. But it does distinguish, for example, between "terrain" ("A region of the Earth that is considered a physical feature, such as the Great Plains") and "terrane" ("A body of rock bounded by faults and characterized by a geologic history that differs from adjacent terranes"). It would be improved by listing all the examples in the book. The index probably doesn't list all occurrences of each term.

Whether you seek the newest or oldest rocks, or relics of ancient Gondwanaland or Rodinia, this book shows the way. These 101 geo-sites are well worth the trip for anyone interested in the more durable parts of Nature.

It would be great to see you at these appearances and presentations for May and June 2012:

as of May 9, 2012

May 19-20: Maker Faire. Visit my sales booth. They usually put me in the largest building, most often halfway between its center and its east corner. Introducing: manual mechanical analog tetris! Topical sets of JIR. And important parts of my personal library, which I must now sell because of impending lack of space.


May 25-28: BayCon 2012

Friday, May 25

Irreproducible Results 2:30 PM to 4:00 PM in San Tomas room (with Berry Kercheval, Jay Reynolds Freeman, Allison Lonsdale) Panelists discuss the fun and foibles of the scientific world.

Is the Patent System Broken? 4:00 PM to 5:30 PM in San Tomas room (with Vickie Brewster, Scott Beckstead, Hugh Daniel) The Patent Law Reform Act of 2011 made many significant changes, including making it first to file, not first to invent. Is this an improvement, or are their still fundamental flaws?

Saturday, May 26

How the Style of Writing Can Make a Book Readable 11:30 AM to 1:00 PM in Winchester room (with Brandon Sanderson, Maya Kaathryn Bohnhoff, Diana L. Paxson, Dario Ciriello) First person? Omniscient? First person smart aleck? A discussion of how and why does the point of view change our liking or disliking of a storyline. How does the way authors convey their story, film noir, western, fairytale, tall tale, all come together or fall apart for the reader?

After the Space Shuttle: What's Next? 1:00 PM to 2:30 PM in Camino Real room (with Arthur Bozlee, Jay Reynolds Freeman, Mike Van Pelt) With the retirement of the Space Shuttle, what's happening with getting men and material into space? How about space tourism? Whither the mission to Mars?

The Science of Science Fiction 4:00 PM to 5:30 PM in Lafayette room (with Scott Beckstead, Kay Tracy, Dani Kollin) A discussion of the science behind the fiction, whether e=mc^2 or the warp drive of Star Trek, or the hyperdrive of Star Wars. How much science is needed? How much care do we need to take to avoid having our science come back and bite the author in the bum?

Sunday, May 27

Self Publishing: Where does it fit in the Literary Food Chain? 11:30 AM to 1:00 PM in Lawrence room (with Kyle Aisteach, Jon Cory, Marty Halpern) Between Amazon and Barnes & Noble, self-publishing has taken off; no longer the classical vanity press, often seen as the redheaded stepchild. Is it? Should it be? Where does this fit in the food chain, or is this about to become the Shark?

Travel is My Drug of Choice 2:30 PM to 4:00 PM in Camino Real room (with Chaz Brenchley, James Stanley Daugherty, Deirdre Saoirse Moen) Avid travelers travel for different reasons. Panelists discuss the motivations behind their enthusiasm.

"Hard Science" Science Fiction Doesn't have to be Hard 5:30 PM to 7:00 PM in Winchester room (with Arthur Bozlee, Scott Beckstead, Veronica Belmont, Kyle Aisteach, Eytan Kollin) What are some books, movies, comic books, etc. that have used GOOD science and still managed to be exciting? What was the bad science that made you howl in pain, could it have been modified to be better science and still keep the story intact?

Monday, May 28

What Do We Know About Mars? 11:30 AM to 1:00 PM in Camino Real room (with Arthur Bozlee, Paula Butler, Kyle Aisteach, Jay Reynolds Freeman) Past, present, and future explorations.


Wednesday, June 13: Speaking for Bay Area Skeptics: Skeptalk:
Tell Me Where to Go, and What to Do When I Get There
7:00 PM, Wednesday, June 13, 2012
La Peña Lounge, 3105 Shattuck Avenue, Berkeley

After 20 years on Daddy-duty, I hit the road next January, towing my camper all over the US and Canada. "The Great Science Trek" will include:

* Touring "Big Science" places. I'm listing labs, space bases, important research institutes, ... How can I tour the Agriculture Lab in Albany?
* I plan to speak to groups of: skeptics, astronomers, science writers and bloggers, science cafes, ... Where can I get lists of these? What other types of audience should I seek?
* Amateur astronomers hold big "star parties". I'll observe the sky, and the kinds of telescopes now used, and how observers interact with their scopes. Do amateurs in other sciences have comparable gatherings? I'd love to sample some of those.
* I'll photograph myself at places with scientific names. When I lecture my students about Mars, I can show myself at Mars, Pa., and tell them "I know, because I've BEEN THERE." Any suggestions?
* "Don't Go There": where, and why not. Juarez, Mexico: not safe.

I'll gather input for book-like projects to publish by ~2016:
* Scientific white elephants: The Superconducting Super Collider left a big arc-shaped hole in Texas. Missile silos are being recycled for storage, housing, and a survivalist compound. Big observatories may turn into white elephants. What else might? (Mansions are often too expensive for families to keep. They often turn public, recycled as colleges, hospitals, or musea, and often aren't such great venues, very expensive to maintain.)
* I want to touch rocks deposited during every geological epoch (about 38 epochs in the last 542 million years). It's difficult to find listings of layers' ages because geologists prefer to describe their minerals and how they formed. To get all 38 epochs since the Cambrian will probably require visiting more than 10 sites. Please recommend multi-layer road cuts, cliffs, and other exposures.
* In entomology, I want to learn how locals cope with their pests. Some of those critters have specific behaviors and characteristics that locals have noticed.
* Especially, characteristics of infestations by Argentine ants. They absolutely LOVE my kitchen. They make fantastic supercolonies. Where edges of their supercolonies meet, they can wage perpetual ant-wars, where the front can move back and forth a hundred meters a year. Have you noticed anything about Argentine ants?
* Places rebuilding from disaster: The Bay Bridge was closed for a month after the 1989 earthquake, and its reconstruction should finish any generation now. The Oakland Hills burned in 1991 and now feature bigger homes and smaller trees. Greensburg, Kansas, was demolished by a tornado and rebuilt as a "green" city. Where did destruction defeat a town? Can I determine factors regarding type of disaster, degree of disaster, years since disaster?
* I'll photograph and measure giant pop-art sculptures of people, animals, objects, and so on. I intend to concoct a tongue-in-cheek satire, saying these are traces of giant critters and cultures. Can you suggest where I can find some of these giant figures?
* I'll visit places "Frozen in Time", like Plimouth Plantation, where it's always 1627. By arranging them by date, I can trace development through time. I can track technological evolution in kitchens, windows, chairs, etc. I've noticed that basic components of "comfortably furnished rooms" haven't changed hugely since the early 1700s, it's just that vastly more people can now afford them. Where do you know a place that's "frozen in time"?

I'll bring maps of places listed-so-far.
More detail on my blog.


Saturday, June 30: attending the Northern California Historical Astronomy Luncheon and Discussion Association, viewing 2 private antiquarian collections in Marin County. If you're interested, contact me for details.

AM: Of Beauties and Beasts: The Golden Age of Celestial Cartography. Hundreds of maps, frontispieces, memorabilia from a superb collection!

From 1600 to 1800, celestial cartography reached its peak in beauty and quality with the publication in Europe of a number of breathtaking atlases and prints related to the heavens. Some were maps of lunar or planetary surfaces, or diagrams of the solar system according to various cosmological theories (e.g., the Earth-centered universe of the classical Greeks, the Sun-centered system of Copernicus). But the most striking images were of the constellations. Classical Greek traditions abounded, with allegorical visual representations of heroes and heroines, real and imaginary animals, and scientific and artistic tools and instruments. But why were such constellation images used in star maps?

The 17th Century ushered in the Golden Age of celestial cartography in Europe. 4 individuals particularly advanced the field and influenced the work of other celestial cartographers: Johann Bayer, Johannes Hevelius, John Flansteed, and Johann Bode. Lesser contributions from Andreas Cellarius, Johann Doppelmayr, and John Bevis.

PM: A collection of detailed ship models. These are really big models at 1/4"= 1 ft scale so seeing the real things is really a shocking experience for the arts and craft lover. It is remarkable that so many such delicate creations have survived centuries of violence and accidents to come down to us intact to appreciate.

The ship models mostly are old models built in the 17th and 18th Centuries, mostly in Britain. They are often called Navy Board or Admiralty models. The practice of building very accurate and exquisitely decorated ship models in England appears to date from the time of Oliver Cromwell in the mid-17th Century. They are considered the pinnacle of the ship modelers' art and many advanced modelers copy the style or make modern replicas to show off their skills.

The Core of the Problem is the Problem of the Core

© Norman Sperling, April 30, 2012

The media made a big hullabaloo over the public announcement of forming a company to mine near-Earth asteroids.

In several ways, the announcement sounded right:

* Launch a fleet of spectroscopic telescope satellites to "scope out" potential targets. Wise!

* They distinguished between icy and heavy-metal asteroids, and mentioned the potential values of each. Correct.

* First, target the icy, primitive asteroids (types C, P, D, and probably K) because their ice can make rocket fuel. So far so good. They're also abundant, contain the widest variety of minerals, and are the loosest-bound, so they should be easiest to mine. But the "rare earth" metals are pretty skimpy in these asteroids. Not as bad as Earth's surface rocks, but poor ore.

* Media reports recognize that minerals which are valuable because of scarcity will become much less valuable if the market is flooded. They include the concept of rationing to slow the flow. I expect that must occur naturally, because it will take time to break up and refine an asteroid. Attaching mining devices to an asteroid hardly makes the entire asteroid immediately available as refined metals.

I didn't see the media discuss another big factor, which is both an asset and a liability.

Metal asteroids (type M) are remnant cores of formerly-larger planet-like bodies. They accreted so much that they heated up. They get heat from collision, sunlight, condensation, and the decay of radioactive atoms inside. As long as they're small, they radiate heat out faster than they collect it. But bulk acts like a blanket, so once an object builds up to more than a few hundred kilometers in diameter, it can't dump heat as fast as it builds it up. If you don't mind a sip of technicality: that's because as an object gets bigger, the volume (in which to generate and hold radioactive heat) grows as the cube of the radius, but the surface (from which to radiate heat away) only grows as the square of the radius.

Under the heavy pressure of hundreds of kilometers of minerals sitting on top of them, and the increasing heat, primitive rocks melt. They quickly differentiate: light stuff floats, and dense stuff sinks. This results in layers, in order of density. That's why Earth's layers are the inner core, outer core, mantle, crust, hydrosphere, and atmosphere.

Those aren't pure, refined elements. They are mixtures, alloys, suspensions, and a variety of other combinations.

Cooled-off, solidified nickel-iron outer cores are what we think we're seeing in type-M asteroids. All our metal meteorites are from those outer cores. Iron shells are probably awfully tough to break by collisions at the speeds common in the asteroid belt. But mining engineers can probably crack that problem.

The big problem comes from exposing the inner core, to which most precious heavy metals migrate. The inner kernels may be relatively small. The mix there will have every heavy element that doesn't linger up here on the surface. That's why they're the rarest up here. Those include radioactive elements with long half-lives. In other words, the core alloy must be radioactive. I saw no mention of this important factor in the company's statement or media coverage.

We don't even know which substances dissolve into one another under the conditions of the inner core. The radioactive and the quiet minerals probably make novel combinations with unknown characteristics. Non-radioactive components have been irradiated for 4 billion years. Would that induce unfamiliar radioactive isotopes?

Metal asteroids that expose some of their radioactive inner core might be detectable by that radiation. I've never seen a study relating unattributed detections of ionizing radiation to the locations of type-M asteroids. I wonder if we've already detected some, but not recognized that yet.

Surely, to extract useful minerals from an inner core will require a lot of refinement. Refining enough uranium and plutonium for bombs and reactors required building entire scientific cities - Hanford, Oak Ridge, and so on - running enormous factories round the clock for decades. Similar operations with robots, in space, will probably be extremely expensive. How would mining robots recognize and handle the radiation? Refinery hardware and electronics would have to survive intense radiation as well as extreme temperatures and vacuum. Transmutation of the robots' own atoms would change their usability.

Components for use among people on Earth would have to emit no more than background levels of ionizing radiation. What an extreme refinement!

Weird Astronomy: Tales of Unusual, Bizarre, and Other Hard to Explain Observations

Weird Astronomy: Tales of Unusual, Bizarre, and Other Hard to Explain Observations, by David A. J. Seargent. 317p. Springer 2010. $39.95. 978-1-4419-6423-6.

reviewed and © by Norman Sperling, April 26, 2012

Australian astronomy writer David Seargent knows sky-watching - a long-time amateur astronomer, he discovered a comet in 1978. He has been telling about these curiosities in a long string of articles for Southern Astronomy, which became Sky & Space magazine. He has integrated and smoothed them out well for this book. But one standard that may have been OK in the magazine grates on me! He uses exclamation points way too much!

Between exclamation points, Seargent tells these neat stories with an easy flow and a light touch. He explains things in a clear, friendly way that teaches accurately but painlessly. Collectively, they form good lessons on scientific reasoning, the importance of data quality, and understanding how the sky works. The Universe seems to show more phenomena than humans have so far commanded. The stories are very enjoyable for readers who haven't heard them before. They will certainly entertain readers interested in any science.

Seargent also inserts suggestions for projects. Every reader, from novice through expert, can find some interesting possibilities to work on.

Some items from the main chapters:
* Our Weird Moon: William Herschel noticed 3 red glowing spots on the dark part of the Moon on April 19, 1787. He thought they were erupting volcanoes, but that would have left evidence that we would now see, and we don't. Seargent points out that that very same night had intense aurora as far south as Italy, and asks if the same flow of high-energy particles hitting Earth might trigger glows on the Moon.
* Odd but Interesting Events Near the Sun, including transits and comets.
* Planetary Weirdness dwells mostly on Mars, and wonders if microbes do, too.
* Weird Meteors: Curving, zigzagging, and black meteors have been reported.
* Strange Stars and Star-Like Objects: including assorted flashes and blinks.
* Moving Mysteries and Wandering Stars: several tiny comets have been spotted close to Earth.
* Facts, Fallacies, Unusual Observations, and Other Miscellaneous Gleanings: planets and stars by daylight, the thinnest crescent Moon, odd meteorites, and the "potassium flare" star whose spectrum actually measured a smoker striking a match.

The publisher's contributions to this book aren't as good as the author's. There are several typos, though none of them interferes with understanding. While the text is printed very clearly, many of the pictures are too dark and murky, and hard to distinguish. The color pictures lack resolution. The publisher appears to have trusted a new printing technology, which seems not ready for prime time yet.

Defining any book project requires many decisions to be made. They decided this one would be "popular" rather than scholarly, so they left out all references. But this subject matter is deliberately obscure, and they give no hint as to where to chase down any item that attracts your fancy. There were many items that I could not even guess where to pursue, beyond a web-search.

But many of them I do know where to look for: Mysterious Universe by the late William R. Corliss. (Sourcebook Project, 1979). When I started wondering about those Earth-approaching comets, I checked the Corliss compendium and found 2 of Seargent's 3, plus several others, all with full quotations from the original literature. Corliss has quite a number of Seargent's phenomena. More on the personalities and places can be found in Joe Ashbrook's Astronomical Scrapbook (Cambridge University Press), a compilation of his articles in Sky & Telescope magazine. So readers have a choice: the simplest pleasure-read is Seargent's. Ashbrook's is more scholarly. Corliss reprints the original sources verbatim, retaining all the original information and flavor ... sometimes stuffy. Also, Corliss never tells how a story came out: were the observations flawed? Did they start a new paradigm? Seargent can solve scholars' problems by posting his references on a website.

As expected, Seargent finds more articles in the British heritage, Ashbrook in the American. This leads me to wonder how badly culture and language still inhibit communication. What curiosities have observers logged in other languages? Can we get those correctly translated, compiled, indexed, and entertainingly narrated? What percentage of the total do these English-language sources contain? How can readers of lots of other languages become familiar with these?

Corliss compendia cover most sciences. Seargent has now published one on meteorology. Do other sciences have corresponding light-reading books of curiosities like Seargent's or Ashbrook's?

7 Spectral Types in 1 Big Loop

© Norman Sperling, April 15, 2012
Part of a series on Educational Star Parties:
Star Parties Designed for Students (July 7, 2012)
Trading Cards for Telescopes and Celestial Objects (September 20, 2012)
Telescope Triplets (November 25, 2011)

When I teach about stars, the 7 main spectral types usually seem rather abstract. I show their different spectra, but that's hard to relate to what students actually see in a starry sky. I show Planck curves and explain how surface temperature results in color differences that you can actually notice. Star colors aren't the sharp tones of advertising signs, but you can definitely notice the tinges.

Star tinges are less than impressive to the naked eye, because starlight is so dim that it mostly triggers the black-and-white-registering rod cells in your retina. Only the 20 or so brightest stars deliver so much light that they also trigger a few color-sensitive cone cells, and those only barely.

But even a small telescope collects enough light to trigger a whole lot more cones in your retina, making the colors appear appreciably bolder. So a star party that is deliberately planned for student education should use 7 small telescopes to point at a bright star of each of the 7 spectral types, to emphasize their different colors. Arrange the scopes so a single line of viewers looks through all 7 scopes in order, either OBAFGKM or MKGFABO. After everybody has seen that, re-aim those scopes to their next targets.

Yes, A and F stars really do look white, but now you appreciate how real that is, unlike an artifact of not triggering enough cone cells.

For each spectral type, at any position of the sky, you can find examples at third magnitude or brighter.

All 7 spectral types are blatant around the Great Winter Oval:
O: Mintaka and Alnitak
B: Rigel, Bellatrix, El Nath, Alnilam, and Saiph
A: Sirius
F: Procyon
G: Capella
K: Aldebaran and Pollux
M: Betelgeuse

The Great Winter Oval has many advantages. It's accessible late in the Fall semester, late in the evening; all winter long; and just after dusk well into Spring semester. Since it straddles the equator, it's easily seen from practically everywhere that people live. Only in May, June, and July is it not available - parts of it even then.

When part of the Great Winter Oval is hidden by the Sun's glare, here are some bright alternatives:
O: zeta Ophiuchi and zeta Puppis
B: Alpheratz, Algol, Regulus, Spica, and Alkaid
A: Denebola, Alioth, Mizar, Gemma, Vega, Deneb, Altair, and Fomalhaut
F: Polaris, Algenib, and Sadr
G: the Sun, beta Corvi, Vindemiatrix, eta Bootis, eta Draconis, and beta Herculis
K: Alphard, Dubhe, Arcturus, and Kochab
M: Antares, Mira, and beta Andromedae

Decrease the number of telescopes needed, and make the contrast more vivid, by showing wide, bright, color-contrast double stars:
Algieba: K + G
Albireo: K + B
gamma Andromedae: K + B
Cor Caroli: A + F

Bigger scopes show color contrast in:
32 Eridani: G + A
h3945 Canis Majoris: K + F

Don't try to add spectral class W unless you're far enough south to see the only bright one, gamma Velorum, -47 degrees. There are only about 150 Wolf-Rayet stars known in our galaxy. No others are close enough to look brighter than 6th magnitude. The biggest bunch is around the Summer Triangle.

I'll comment more on planning star parties for student education in later postings.

Spring 2012 Conventions Where I Might See You

by Norman Sperling, March 18, 2012

It's always great to meet readers and people with things to say. I'll be at these public conventions this Spring:

FogCon, March 30-April 1, Marriott Hotel, Walnut Creek: reading a selection, Santa Rosa Room, 9-10:15 AM March 31st, along with science fiction writers Alyc Helms and Andrea Blythe. http://www.fogcon.org

SkeptiCal (skeptical of pseudoscience) April 21, DoubleTree Hotel, Berkeley Marina. Sales table. Very interesting program! register at http://www.skepticalcon.org .

MakerFaire, May 19-20: Sales booth. Enormous, spectacular convention for do-it-yourselfers and many allied categories. San Mateo County Fairgrounds. http://www.makerfaire.com.

BayCon, May 25-28, Hyatt Regency Santa Clara: panels to be announced. http://www.baycon.org .

What Food Ingredient Does What to Your Body?

© Norman Sperling, January 19, 2012

Over the decades, I've suffered from a variety of afflictions. Doctors know how to fix some of them. Others have no known cause (that's called "idiopathic"). Some treatments are expensive, some treatments are ineffective. And some of my ailments and frailments not only have no known cause, they have no known treatment.

I discovered long ago that 2 of my problems trace to conventional foods that are widely regarded as "healthy". I discovered one of those entirely by accident, when the price of that favorite food skyrocketed and I boycotted it for a month ... and felt much better! Trying variations on the theme of that food isolated the components that hurt me. I've never found an antidote, so I strictly avoid the stuff.

I've recently discovered that a newer ailment traces to 2 other very common food chemicals. Eliminating those chemicals enormously reduced my affliction ... and also made a marked improvement in my general "aches and pains" – call it "creakiness" – of advancing age. The affliction I minimized seems quite rare, but the creakiness of old age is famously widespread.

So if you're not in perfect health, I recommend conducting a series of experiments on yourself, by eliminating for 2 weeks all foods that contain a selected ingredient. Pick one of the listed items below (or something else that you suspect might trigger problems), read every label in your food supply, and only eat things without that one ingredient for the next 2 weeks. Keep scrupulous notes. For many, I suspect there will be no health difference, meaning that that's not an ingredient that hurts you. Restore benign ingredients to your diet, and move on to another item for another 2 weeks and see if that makes any difference.

Of the dozen ingredients below, 4 definitely hurt me. I take an antidote for one, and avoid the other 3. I have little idea why those 3 substances hurt me, or why now instead of long ago – perhaps my body chemistry has changed. Figuring that out might enable a smarter response than pure avoidance. I won't bias your experiments by telling you which ingredients hurt me; your body isn't quite the same as mine so that shouldn't be an issue anyway.

sodium bicarbonate
salt (reduce to recommended daily dose; don't eliminate, because some is vital)
fructose, or high-fructose corn syrup
sodium nitrate (usually comes with sodium nitrite)
citric acid or a citrate

Note that this experiment should be safe because you're not adding a new chemical, you're subtracting one. You definitely must read every label. Finding alternatives may bring somewhat greater variety in your diet.

If a change makes something happen that feels bad, STOP! Go back to your old ways, and maybe move on to another item on the list (or from your own list).

Results of changes noted, and of no-changes noted, are both valuable. Please let me know.

Telescope Triplets

© Norman Sperling, November 25, 2011
Part of a series on Educational Star Parties:
Star Parties Designed for Students (July 7, 2012)
7 Spectral Types in 1 Big Loop (April 15, 2012)
Trading Cards for Telescopes and Celestial Objects (September 20, 2012)

For decades, I have been proclaiming that focal ratio is one of the most important characteristics in choosing a telescope. Most authorities tout aperture instead. But none of us has ever conducted a true visual test, isolating the variables of focal ratio, aperture, and eyepieces.

I propose that 3 triplets of Newtonian telescopes be made to demonstrate the effects of focal ratio, aperture, and eyepiece. They can be used for classes and at star parties to teach about the properties of the telescopes themselves. Mount each triplet so that viewers can easily shift among all 3 eyepieces to instantly compare views.

The "focal ratio" triplet should consist of 3 telescopes, all with the same aperture and eyepiece. Make one f/5, another f/10, and another f/20. For this triplet, I think 3-inch (76 mm) apertures are best: even the f/20 would be a manageable 5 feet (1.52 m) long. Users will see that Jupiter looks best at f/20, and the Great Andromeda Galaxy best at f/5. Trying this battery of telescopes on the sky's enormous variety of targets will probably reveal very few objects that look best at f/10.

A second application of this same telescope set will use different eyepieces that all result in the same magnification: a long eyepiece on the long scope, a short eyepieces on the short scope, and a middling eyepiece on the middling scope. How different are the views of different targets?

The "aperture" triplet should consist of 3 telescopes, all with the same focal length (perhaps 4 feet = 1.22 m) and eyepiece. Make one 3 inches (76 mm) aperture, the second 6 inches (152 mm), and the third 12 inches (304 mm). Users may be surprised how much even the 3-inch shows.

The "eyepiece" triplet should consist of 3 identical middling telescopes, perhaps 4-inch (102 mm) f/8. Insert eyepieces of equal focal length but different optical designs (such as Huygens versus orthoscopic versus Nagler). A second application of this same telescope array will use eyepieces of equal design but different focal lengths (perhaps Plossls of 6 mm, 12 mm, and 25 mm ...).

Make each triplet so the scopes, and their eyepieces, can also swivel to allow 2, or even 3, different people to watch through one of the scopes at a time. This is because, perhaps once a decade, some sky event brings out throngs, and the host needs to move a whole lot of eyeballs through the scopes in minimal time.

These triplets could be built by amateur-telescope-making workshops, such as several clubs run, or perhaps by a veteran scope-maker. Most are quite small, only one is large. Try hard to hold all but one factor constant so they really test that single variable.

A whole metropolitan area probably needs only one set. Telescope triplets can be passed around among nearby colleges, astronomy clubs, planetaria, etc., to use at their classes, star parties, and member-events.

Develop Your Own Product

© Norman Sperling, October 9, 2011

Develop and sell your own product or service. This little sideline can help in everything
* from venting frustration ("I'll show THEM!")
* to opening doors (I earned even more from contracts facilitated by being author of my first book, than I earned from selling the book itself)
* to actually producing decent income on its own.
Running your own business gets you a high, different, and useful status, and the potential to build something bigger.

Start with something you can do distinctively, even if it's a very small enterprise. Keep it affordable under your circumstances. The very exercise of taking something from idea all the way through the practicalities of production, sales, and distribution is a huge education and a huge accomplishment. The techniques it teaches you can help a wide array of your other activities. And the people it introduces you to can open more doors.

Then spread the word. Set up a website, and maybe a blog. Show your expertise and how distinctive your product or service is. Tell leaders in the field about your stuff. Encourage up-and-coming leaders to use it.

Career-long, full-time jobs scarcely exist any more. There are times when conventional employment may let you down: cutbacks, layoffs, firings, expirations, disqualifying circumstances, whatever. When that happens, you're still a "somebody" because you run your own business. You'll always have your current business card, not merely a card from where you used to work. The status of "business owner" is way better than the status of "unemployed". How little your business is, is no one else's business (except the tax authorities). If you have time on your hands, put some of it into developing your little business into something a little less little. That'll feel good, and earn a bit more money in tight times.

Once in a while, a little business can take off and turn quite profitable. When ideas occur, and/or pathways open to bigger things, you'll already be established. Scaling up is way easier than newly establishing everything. Be poised so that could happen to you.

Essential Reading on Your Own Business:
Bernard Kamoroff: Small Time Operator.
Claude Whitmyer & Salli Rasberry: Running a One Person Business. Ten Speed.

Michael Phillips & Salli Rasberry: Marketing Without Advertising. Nolo Press.
Michael Phillips & Salli Rasberry: The Seven Laws of Money.
Michael Phillips & Salli Rasberry: Honest Business.
The Briarpatch Book.
Rafi Mohammed: The Art of Pricing. Crown 2005.

Great Guidebooks for Scientific Travelers

Reviewed and © by Norman Sperling, October 3, 2011

Duane S. Nickell: Guidebook for the Scientific Traveler: Visiting Physics and Chemistry Sites Across America. Rutgers U. Press 2010. Paperback $19.95. 978-0-8135-4730-5.

and Guidebook for the Scientific Traveler: Visiting Astronomy and Space Exploration Sites Across America. Rutgers U. Press 2008. Paperback $21.95. 978-0-8135-4374-1.

Most of the travel books I've filtered through in planning my Great Science Trek specialize in factories, oddities, architecture, history, pop culture, technology, and politics. Travel books for scientists are rare - just a few on geology and observatories. Do you know any others? Duane S. Nickell is starting a series to fill this niche. Rutgers University Press has set up "The Scientific Traveler" series, and Nickell has written its first 2 volumes.

Each chapter begins with a gem-quality tutorial. To understand gigantic particle accelerators, start with the essay on particle physics. To get why you should examine meteorite collections, start with the essay on meteorites.

Taking advantage of his modern, tech-savvy audience, Nickell wastes no space on maps or directions. He gives addresses, phone numbers, and websites, from which visitors can get all they need. He cites admission fees as of presstime, which everybody knows can change.

Nickell found a whole lot of chemistry places I'd never heard of, and points out aspects of astronomy and physics places that I never thought of - such as rooms where important things occurred on the campus where I teach (certainly not my room). He has chapters on the scientists themselves plus their universities, labs, accelerators, museums, and monuments. "Chemicals in Industry", for example, features places that make glass, borax, paper, cosmetics, pharmaceuticals, toothpaste, beer, and whiskey.

Some kinds of technology lie in plain sight but go uninterpreted. Wind farms, for example, occupy impressive stretches of hills and deserts, but none has a visitor center or even a gift counter. A display of varieties of windmills, a demonstration of a generator, and a few relevant models and publications for sale, would make a respectable roadside stop. Other energy forms with sites-to-see include oil, coal, nuclear, hydroelectric, and solar.

Astronomers flock to places with the darkest skies, and buy up all the land to prevent disturbing lights from encroaching. Several such astronomy villages have sprung up. I can only think of one other place where followers of a science build their vacation homes together: Scientist's Cliffs, Maryland. Are there others?

The books are well-produced, well-illustrated, and reasonably priced. The rare misspellings won't cause any problems. But use an actual map rather than trust a statement like "15 miles southeast" because it might not be southeast.

Science people should consult these both for novel day-trips in their own areas, and for sights to visit while traveling. I tallied the listings I've visited so far: 36 of 57 in the Astronomy/Space volume, but only 25 of 92 in Physics/Chemistry. I'm going to enjoy some more sights!

The Journal of Irreproducible Results
This Book Warps Space and Time
What Your Astronomy Textbook Won't Tell You

Your Cart

View your shopping cart.